Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Pharmacol Res ; 188: 106675, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36693600

RESUMO

The neuropeptide galanin receptor 3 (GALR3) is a class A G protein-coupled receptor (GPCR) broadly expressed in the nervous system, including the retina. GALR3 is involved in the modulation of immune and inflammatory responses. Tight control of these processes is critical for maintaining homeostasis in the retina and is required to sustain vision. Here, we investigated the role of GALR3 in retina pathologies triggered by bright light and P23H mutation in the rhodopsin (RHO) gene, associated with the activation of oxidative stress and inflammatory responses. We used a multiphase approach involving pharmacological inhibition of GALR3 with its antagonist SNAP-37889 and genetic depletion of GALR3 to modulate the GALR3 signaling. Our in vitro experiments in the retinal pigment epithelium-derived cells (ARPE19) susceptible to all-trans-retinal toxicity indicated that GALR3 could be involved in the cellular stress response to this phototoxic product. Indeed, blocking the GALR3 signaling in Abca4-/-/Rdh8-/- and wild-type Balb/cJ mice, sensitive to bright light-induced retina damage, protected retina health in these mice exposed to light. The retina morphology and function were substantially improved, and stress response processes were reduced in these mouse models compared to the controls. Furthermore, in P23H Rho knock-in mice, a model of retinitis pigmentosa (RP), both pharmacological inhibition and genetic ablation of GALR3 prolonged the survival of photoreceptors. These results indicate that GALR3 signaling contributes to acute light-induced and chronic RP-linked retinopathies. Together, this work provides the pharmacological knowledge base to evaluate GALR3 as a potential target for developing novel therapies to combat retinal degeneration.


Assuntos
Degeneração Retiniana , Retinite Pigmentosa , Camundongos , Animais , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Receptor Tipo 3 de Galanina/genética , Retinite Pigmentosa/genética , Retinite Pigmentosa/patologia , Retina/patologia , Mutação , Modelos Animais de Doenças , Transportadores de Cassetes de Ligação de ATP/genética
2.
Biomolecules ; 12(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36551197

RESUMO

Galanin (GAL) is an important neurotransmitter released by the enteric nervous system (ENS) neurons located in the muscularis externa and submucosa enteric plexuses that acts by binding to GAL receptors 1, 2 and 3 (GALR1, 2 and 3). In our previous studies, the GAL immunoexpression was compared in colorectal cancer (CRC) tissue and the adjacent parts of the large intestine wall including myenteric and submucosal plexuses. Recently we have also found that expression levels of GALR1 and GALR3 proteins are elevated in CRC tissue as compared with their expression in epithelial cells of unchanged mucosa. Moreover, higher GALR3 immunoreactivity in CRC cells correlated with better prognosis of CRC patients. To understand the distribution of GALRs in enteric plexuses distal and close to CRC invasion, in the present study we decided to evaluate GALRs expression within the myenteric and submucosal plexuses located proximally and distally to the cancer invasion and correlated the GALRs expression levels with the clinico-pathological data of CRC patients. The immunohistochemical and immunofluorescent methods showed only slightly decreased immunoexpression of GALR1 and GALR3 in myenteric plexuses close to cancer but did not reveal any correlation in the immunoexpression of all three GAL receptors in myenteric plexuses and tumour progression. No significant changes were found between the expression levels of GALRs in submucosal plexuses distal and close to the tumour. However, elevated GALR1 expression in submucosal plexuses in vicinity of CRC correlated with poor prognosis, higher tumour grading and shorter overall survival. When myenteric plexuses undergo morphological and functional alterations characteristic for atrophy, GALRs maintain or only slightly decrease their expression status. In contrast, the correlation between high expression of GALR1 in the submucosal plexuses and overall survival of CRC patients suggest that GAL and GALRs can act as a components of local neuro-paracrine pro-proliferative pathways accelerating the invasion and metastasis of cancer cell. The obtained results suggest an important role of GALR1 in submucosal plexuses function during the progression of CRC and imply that GALR1 expression in submucosal plexuses of ENS could be an important predictive factor for CRC progression.


Assuntos
Neoplasias Colorretais , Plexo Mientérico , Receptor Tipo 1 de Galanina , Receptor Tipo 2 de Galanina , Receptor Tipo 3 de Galanina , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Intestinos/inervação , Plexo Mientérico/metabolismo , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 3 de Galanina/metabolismo , Invasividade Neoplásica , Metástase Neoplásica
3.
Biochem Biophys Res Commun ; 627: 207-213, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36055012

RESUMO

Spexin (SPX) is a newly identified neuropeptide, a natural ligand for the galanin receptors (GALR) 2/3, which is involved in maintaining physiological functions including female reproduction. One of the most common endocrine disorder in reproductive system is polycystic ovary syndrome (PCOS), however the role of SPX in PCOS is still unknown. The objective of this study was to determine the expression of mRNA and peptide levels of SPX and its receptors GALR2/3 in the hypothalamus and ovary (by real time PCR and Western blot) as well as plasma levels of SPX (ELISA) in letrozole - induced PCOS rats. We observed that SPX plasma level does not change in PCOS rats. In the hypothalamus transcript level of Spx and Galr3 were significantly higher in PCOS rats compared to the control, while mRNA of Galr2 and protein expression of GALR2/3 were lower. Moreover, expression of Spx and Galr2/3 mRNA as well as GALR2/3 peptide production were lower in the ovary of PCOS rats. In summary, while our results did not show differences in plasma SPX levels, we observed tissue-dependent significant differences in the SPX/GALR2/3 levels between PCOS and control rats, what indicates possible new mechanisms of PCOS neuroendocrinology.


Assuntos
Hormônios Peptídicos/metabolismo , Síndrome do Ovário Policístico , Receptor Tipo 3 de Galanina/metabolismo , Animais , Feminino , Humanos , Hipotálamo/metabolismo , Letrozol , Síndrome do Ovário Policístico/induzido quimicamente , RNA Mensageiro , Ratos , Receptor Tipo 2 de Galanina/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409094

RESUMO

Colorectal cancer (CRC) is the second most common cause of cancer in women and the third in men. The postoperative pathomorphological evaluation of patients with CRC is extremely important for future therapeutic decisions. Although our previous studies demonstrated high galanin (GAL) presence within tumor tissue and an elevated concentration of GAL in the serum of CRC patients, to date, there is a lack of data regarding GAL receptor (GalR) protein expression in CRC cells. Therefore, the aim of this study was to evaluate the presence of all three types of GalRs (GalR1, GalR2 and GalR3) within epithelial cells of the human colon and CRC tissue with the use of the immunohistochemical method and to correlate the results with the clinical-pathological data. We found stronger immunoreactivity of GalR1 and GalR3 in CRC cells compared to epithelial cells of the unchanged mucosa of the large intestine. No differences in the GalR2 protein immunoreactivity between the studied tissues were noted. We also found that the increased immunoexpression of the GalR3 in CRC tissue correlated with the better prognosis and longer survival (p < 0.0079) of CRC patients (n = 55). The obtained results suggest that GalR3 may play the role of a prognostic factor for CRC patients. Based on data from the TCGA-COAD project deposited in the GDC Data Portal, we also found that GalR mRNA in cancer samples and the adjacent normal tissue did not correlate with immunoexpression of the GalR proteins in CRC cells and epithelial cells of the unchanged mucosa.


Assuntos
Neoplasias Colorretais , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina , Receptor Tipo 3 de Galanina/metabolismo , Neoplasias Colorretais/genética , Feminino , Humanos , Masculino , RNA Mensageiro/metabolismo , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 2 de Galanina/metabolismo , Receptores de Galanina/genética , Receptores de Galanina/metabolismo
5.
Front Endocrinol (Lausanne) ; 12: 681646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276561

RESUMO

Spexin (SPX), a highly conserved neuropeptide, is known to have diverse functions and has been implicated/associated with pathological conditions, including obesity, diabetes, anorexia nervosa, and anxiety/mood disorders. Although most of the studies on SPX involved the mouse model, the solution structure of mouse SPX, structural aspects for SPX binding with its receptors GalR2/3, and its cellular expression/distribution in mouse tissues are largely unknown. Using CD and NMR spectroscopies, the solution structure of mouse SPX was shown to be in the form of a helical peptide with a random coil from Asn1 to Pro4 in the N-terminal followed by an α-helix from Gln5 to Gln14 in the C-terminus. The molecular surface of mouse SPX is largely hydrophobic with Lys11 as the only charged residue in the α-helix. Based on the NMR structure obtained, docking models of SPX binding with mouse GalR2 and GalR3 were constructed by homology modeling and MD simulation. The models deduced reveal that the amino acids in SPX, especially Asn1, Leu8, and Leu10, could interact with specific residues in ECL1&2 and TMD2&7 of GalR2 and GalR3 by H-bonding/hydrophobic interactions, which provides the structural evidence to support the idea that the two receptors can act as the cognate receptors for SPX. For tissue distribution of SPX, RT-PCR based on 28 tissues/organs harvested from the mouse demonstrated that SPX was ubiquitously expressed at the tissue level with notable signals detected in the brain, GI tract, liver, gonad, and adrenal gland. Using immunohistochemical staining, protein signals of SPX could be located in the liver, pancreas, white adipose tissue, muscle, stomach, kidney, spleen, gonad, adrenal, and hypothalamo-pituitary axis in a cell type-specific manner. Our results, as a whole, not only can provide the structural information for ligand/receptor interaction for SPX but also establish the anatomical basis for our on-going studies to examine the physiological functions of SPX in the mouse model.


Assuntos
Hormônios Peptídicos/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 3 de Galanina/metabolismo , Animais , Espectroscopia de Ressonância Magnética , Camundongos , Simulação de Acoplamento Molecular
6.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915732

RESUMO

The neuropeptide galanin (GAL), which is expressed in limbic brain structures, has a strong impact on the regulation of mood and behavior. GAL exerts its effects via three G protein-coupled receptors (GAL1-3-R). Little is known about the effects of aging and loss of GAL-Rs on hippocampal-mediated processes connected to neurogenesis, such as learning, memory recall and anxiety, and cell proliferation and survival in the dorsal dentate gyrus (dDG) in mice. Our results demonstrate that loss of GAL3-R, but not GAL2-R, slowed learning and induced anxiety in older (12-14-month-old) mice. Lack of GAL2-R increased cell survival (BrdU incorporation) in the dDG of young mice. However, normal neurogenesis was observed in vitro using neural stem and precursor cells obtained from GAL2-R and GAL3-R knockouts upon GAL treatment. Interestingly, we found sub-strain differences between C57BL/6J and C57BL/6N mice, the latter showing faster learning, less anxiety and lower cell survival in the dDG. We conclude that GAL-R signaling is involved in cognitive functions and can modulate the survival of cells in the neurogenic niche, which might lead to new therapeutic applications. Furthermore, we observed that the mouse sub-strain had a profound impact on the behavioral parameters analyzed and should therefore be carefully considered in future studies.


Assuntos
Ansiedade/etiologia , Suscetibilidade a Doenças , Aprendizagem/fisiologia , Memória/fisiologia , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 3 de Galanina/genética , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/psicologia , Animais , Ansiedade/metabolismo , Ansiedade/psicologia , Biomarcadores , Giro Denteado/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Imuno-Histoquímica , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Neuropeptídeos/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 3 de Galanina/metabolismo , Aprendizagem Espacial , Especificidade da Espécie
7.
Sci Rep ; 11(1): 564, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436730

RESUMO

The regulatory (neuro)peptide galanin and its three receptors (GAL1-3R) are involved in immunity and inflammation. Galanin alleviated inflammatory bowel disease (IBD) in rats. However, studies on the galanin receptors involved are lacking. We aimed to determine galanin receptor expression in IBD patients and to evaluate if GAL2R and GAL3R contribute to murine colitis. Immunohistochemical analysis revealed that granulocytes in colon specimens of IBD patients (Crohn's disease and ulcerative colitis) expressed GAL2R and GAL3R but not GAL1R. After colitis induction with 2% dextran sulfate sodium (DSS) for 7 days, mice lacking GAL3R (GAL3R-KO) lost more body weight, exhibited more severe colonic inflammation and aggravated histologic damage, with increased infiltration of neutrophils compared to wild-type animals. Loss of GAL3R resulted in higher local and systemic inflammatory cytokine/chemokine levels. Remarkably, colitis-associated changes to the intestinal microbiota, as assessed by quantitative culture-independent techniques, were most pronounced in GAL3R-KO mice, characterized by elevated numbers of enterobacteria and bifidobacteria. In contrast, GAL2R deletion did not influence the course of colitis. In conclusion, granulocyte GAL2R and GAL3R expression is related to IBD activity in humans, and DSS-induced colitis in mice is strongly affected by GAL3R loss. Consequently, GAL3R poses a novel therapeutic target for IBD.


Assuntos
Colite Ulcerativa/genética , Colite Ulcerativa/microbiologia , Doença de Crohn/genética , Doença de Crohn/microbiologia , Microbioma Gastrointestinal , Expressão Gênica , Receptor Tipo 3 de Galanina/fisiologia , Animais , Colite Ulcerativa/terapia , Doença de Crohn/terapia , Humanos , Inflamação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Ratos , Receptor Tipo 3 de Galanina/genética , Receptor Tipo 3 de Galanina/metabolismo
8.
Mol Cell Endocrinol ; 518: 110991, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841709

RESUMO

The function of the gonadotropin-releasing hormone (GnRH) neuron is critical to maintain reproductive function and a significant decrease in GnRH can lead to disorders affecting fertility, including hypogonadotropic hypogonadism. Spexin (SPX) is a novel hypothalamic neuropeptide that exerts inhibitory effects on reproduction and feeding by acting through galanin receptor 2 (GALR2) and galanin receptor 3 (GALR3). Fatty acids can act as nutritional signals that regulate the hypothalamic-pituitary-gonadal (HPG) axis, and elevated levels of circulating saturated fatty acids associated with high fat diet (HFD)-feeding have been shown to induce neuroinflammation, endoplasmic reticulum stress and hormonal resistance in the hypothalamus, as well as alter neuropeptide expression. We previously demonstrated that palmitate, the most common saturated fatty acid in a HFD, elevates the expression of Spx, Galr2 and Galr3 mRNA in a model of appetite-regulating neuropeptide Y hypothalamic neurons. Here, we found that Spx, Galr2 and Galr3 mRNA were also significantly induced by palmitate in a model of reproductive GnRH neurons, mHypoA-GnRH/GFP. As a follow-up to our previous report, we examined the molecular pathways by which Spx and galanin receptor mRNA was regulated in this cell line. Furthermore, we performed inhibitor studies, which revealed that the effect of palmitate on Spx and Galr3 mRNA involved activation of the innate immune receptor TLR4, and we detected differential regulation of the three genes by the protein kinases PKC, JNK, ERK, and p38. However, the intracellular metabolism of palmitate to ceramide did not appear to be involved in the palmitate-mediated gene regulation. Overall, this suggests that SPX may play a role in reproduction at the level of the hypothalamus and the pathways by which Spx, Galr2 and Galr3 are altered by fatty acids could provide insight into the mechanisms underlying reproductive dysfunction in obesity.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/citologia , Palmitatos/farmacologia , Hormônios Peptídicos/genética , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 3 de Galanina/genética , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Hormônios Peptídicos/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 3 de Galanina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Regulação para Cima
9.
PLoS One ; 15(3): e0230872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231393

RESUMO

Galanin receptors (GALRs) belong to the superfamily of G-protein coupled receptors. The three GALR subtypes (GALR1, GALR2, and GALR3) are activated by their endogenous ligands: spexin (SPX) and galanin (GAL). The synthetic SPX-based GALR2-specific agonist, SG2A, plays a dual role in the regulation of appetite and depression-like behaviors. Little is known, however, about the molecular interaction between GALR2 and SG2A. Using site-directed mutagenesis and domain swapping between GALR2 and GALR3, we identified residues in GALR2 that promote interaction with SG2A and residues in GALR3 that inhibit interaction with SG2A. In particular, Phe103, Phe106, and His110 in the transmembrane helix 3 (TM3) domain; Val193, Phe194, and Ser195 in the TM5 domain; and Leu273 in the extracellular loop 3 (ECL3) domain of GALR2 provide favorable interactions with the Asn5, Ala7, Phe11, and Pro13 residues of SG2A. Our results explain how SG2A achieves selective interaction with GALR2 and inhibits interaction with GALR3. The results described here can be used broadly for in silico virtual screening of small molecules for the development of GALR subtype-specific agonists and/or antagonists.


Assuntos
Receptor Tipo 2 de Galanina/química , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 3 de Galanina/química , Receptor Tipo 3 de Galanina/metabolismo , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Ligantes , Camundongos , Mutação , Domínios Proteicos , Receptor Tipo 3 de Galanina/genética , Especificidade por Substrato
10.
Artigo em Inglês | MEDLINE | ID: mdl-32265844

RESUMO

Expression of neuropeptides and their corresponding receptors has been demonstrated in different cancer types, where they can play a role in tumor cell growth, invasion, and migration. Human galanin (GAL) is a 30-amino-acid regulatory neuropeptide which acts through three G protein-coupled receptors, GAL1-R, GAL2-R, and GAL3-R that differ in their signal transduction pathways. GAL and galanin receptors (GALRs) are expressed by different tumors, and direct involvement of GAL in tumorigenesis has been shown. Despite its strong expression in the central nervous system (CNS), the role of GAL in CNS tumors has not been extensively studied. To date, GAL peptide expression, GAL receptor binding and mRNA expression have been reported in glioma, meningioma, and pituitary adenoma. However, data on the cellular distribution of GALRs are sparse. The aim of the present study was to examine the expression of GAL and GALRs in different brain tumors by immunohistochemistry. Anterior pituitary gland (n = 7), pituitary adenoma (n = 9) and glioma of different WHO grades I-IV (n = 55) were analyzed for the expression of GAL and the three GALRs with antibodies recently extensively validated for specificity. While high focal GAL immunoreactivity was detected in up to 40% of cells in the anterior pituitary gland samples, only one pituitary adenoma showed focal GAL expression, at a low level. In the anterior pituitary, GAL1-R and GAL3-R protein expression was observed in up to 15% of cells, whereas receptor expression was not detected in pituitary adenoma. In glioma, diffuse and focal GAL staining was noticed in the majority of cases. GAL1-R was observed in eight out of nine glioma subtypes. GAL2-R immunoreactivity was not detected in glioma and pituitary adenoma, while GAL3-R expression was significantly associated to high-grade glioma (WHO grade IV). Most interestingly, expression of GAL and GALRs was observed in tumor-infiltrating immune cells, including neutrophils and glioma-associated macrophages/microglia. The presence of GALRs on tumor-associated immune cells, especially macrophages, indicates that GAL signaling contributes to homeostasis of the tumor microenvironment. Thus, our data indicate that GAL signaling in tumor-supportive myeloid cells could be a novel therapeutic target.


Assuntos
Adenoma/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Galanina/metabolismo , Glioma/patologia , Neoplasias Hipofisárias/patologia , Receptores de Galanina/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Criança , Pré-Escolar , Galanina/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Humanos , Pessoa de Meia-Idade , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Receptor Tipo 1 de Galanina/genética , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 3 de Galanina/genética , Receptor Tipo 3 de Galanina/metabolismo , Receptores de Galanina/genética , Adulto Jovem
11.
Neuroscience ; 447: 41-52, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730796

RESUMO

Spexin (SPX) is a novel satiety factor that putatively binds the galanin receptors R2 and R3 (GalR2/R3). SPX reduces body weight, and circulating SPX is decreased in obesity. It is unknown how SPX and its receptors are regulated in the hypothalamus, critical for energy homeostasis. We therefore examined the regulation of hypothalamic Spx, GalR2 and GalR3 gene expression in mouse primary and immortalized hypothalamic neurons. We report that Spx, GalR2 and GalR3 mRNA levels were regulated by acute treatments of palmitate, a dietary saturated fatty acid, as well as the nitric oxide (NO) donor sodium nitroprusside (SNP), but through a pathway independent of cyclic GMP and protein kinase G. Additionally, the palmitate- and NO-mediated induction of Spx and galanin receptors was blocked with the PKC inhibitor k252c. Furthermore, palmitate induced mRNA levels of endoplasmic reticulum (ER) stress markers, including Chop, Grp78 and Bax/Bcl2, as well as C/ebp-ß, whereas SNP induced Bax/Bcl2 and C/ebp-ß. Transcriptional changes in Spx, GalR2, GalR3, C/ebp-ß and ER stress marker mRNAs were blocked by pre-treatment with at least one of the chemical chaperones PBA or TUDCA. We also describe the presence of OCT-1 and C/EBP-ß response elements in the 5' regulatory region of Spx and demonstrate that SNP increases binding of C/EBP-ß to this region, but not Oct-1 mRNA nor OCT-1 binding. Our findings suggest an acute modulation of anorexigenic SPX signaling by palmitate and NO. Furthermore, ER stress and C/EBP-ß appear to mediate the changes in Spx, GalR2 and GalR3 in hypothalamic neurons.


Assuntos
Neurônios/metabolismo , Óxido Nítrico , Palmitatos , Hormônios Peptídicos/genética , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 3 de Galanina/genética , Animais , Chaperona BiP do Retículo Endoplasmático , Galanina/metabolismo , Hipotálamo/citologia , Camundongos
13.
Addict Biol ; 24(5): 886-897, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29984872

RESUMO

Galanin is a neuropeptide which mediates its effects via three G-protein coupled receptors (GAL1-3 ). Administration of a GAL3 antagonist reduces alcohol self-administration in animal models while allelic variation in the GAL3 gene has been associated with an increased risk of alcohol use disorders in diverse human populations. Based on the association of GAL3 with alcoholism, we sought to characterize drug-seeking behavior in GAL3 -deficient mice for the first time. In the two-bottle free choice paradigm, GAL3 -KO mice consistently showed a significantly increased preference for ethanol over water when compared to wildtype littermates. Furthermore, male GAL3 -KO mice displayed significantly increased responding for ethanol under operant conditions. These differences in alcohol seeking behavior in GAL3 -KO mice did not result from altered ethanol metabolism. In contrast to ethanol, GAL3 -KO mice exhibited similar preference for saccharin and sucrose over water, and a similar preference for a high fat diet over a low fat diet as wildtype littermates. No differences in cognitive and locomotor behaviors were observed in GAL3 -KO mice to account for increased alcohol seeking behavior. Overall, these findings suggest genetic ablation of GAL3 in mice increases alcohol consumption.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Comportamento de Procura de Droga/efeitos dos fármacos , Receptor Tipo 3 de Galanina/deficiência , Animais , Apomorfina/farmacologia , Depressores do Sistema Nervoso Central/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante , Maleato de Dizocilpina/farmacologia , Agonistas de Dopamina/farmacologia , Emoções/efeitos dos fármacos , Etanol/metabolismo , Etanol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Medo/efeitos dos fármacos , Feminino , Hipercinese/fisiopatologia , Relações Interpessoais , Masculino , Aprendizagem em Labirinto , Metanfetamina/farmacologia , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Fenótipo , Reflexo de Sobressalto/efeitos dos fármacos , Autoadministração , Filtro Sensorial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
14.
Epilepsia ; 59(11): e166-e171, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30298565

RESUMO

There exists solid evidence that endogenous galanin and galanin agonists exert anticonvulsive actions mediated both by galanin 1 receptor (GAL1-R) and galanin 2 receptor (GAL2-R). We have now investigated whether depletion of the recently identified third galanin receptor, GAL3-R, and that of GAL2-R, alters the threshold to the systemically applied γ-aminobutyric acid (GABA) antagonist pentylenetetrazole (PTZ) or to intrahippocampally administered kainic acid (KA). In neither model, GAL3-KO mice differed in their latency to the first seizure, mean seizure duration, total number of seizures, or time spent in seizures compared to wild-type controls. In addition, consistent with previous data, the response to PTZ was not altered in GAL2-KO mice. In contrast, intrahippocampal KA resulted in a significantly increased number of seizures and time spent in seizures in GAL2-KO mice, although the latency to the first seizure and the duration of individual seizures was not altered. These results are consistent with the previous data showing that GAL2-R knockdown does not affect the number of perforant path stimulations required for initiating status epilepticus but significantly increases the seizure severity during the ongoing status. In conclusion, our data support a specific role of GAL2-R but not of GAL3-R in mediating the anticonvulsive actions of endogenous galanin.


Assuntos
Receptor Tipo 2 de Galanina/deficiência , Receptor Tipo 3 de Galanina/deficiência , Convulsões/genética , Animais , Modelos Animais de Doenças , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pentilenotetrazol/toxicidade , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 3 de Galanina/genética , Convulsões/induzido quimicamente
15.
J Psychopharmacol ; 32(8): 911-921, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29926762

RESUMO

INTRODUCTION: This study aimed to investigate the effects of the galanin-3 receptor antagonist, SNAP 37889, on c-Fos protein expression after cue-induced reinstatement of alcohol-seeking in the brains of alcohol-preferring rats. METHODS: Eighteen alcohol-preferring rats were trained to self-administer 10% v/v ethanol in the presence of response-contingent cues, which was followed by extinction. Rats were then treated with SNAP 37889 (30 mg/kg, i.p.) or vehicle, before being tested for cue-induced reinstatement. Administration of SNAP 37889 reduced cue-induced reinstatement of ethanol-seeking behaviour. To examine the effect of SNAP 37889 and cue-induced reinstatement on neuronal activation, c-Fos expression was measured in subregions of the medial prefrontal cortex and nucleus accumbens. RESULTS: SNAP 37889 administration increased c-Fos immunoreactivity in the nucleus accumbens shell, but was without effect in the nucleus accumbens core and the medial prefrontal cortex. Dual-label Fos/tyrosine hydroxylase immunohistochemistry was used to examine the effects of SNAP 37889 on dopamine neurons in the ventral tegmental area; however, no differences between SNAP 37889 and vehicle-treated rats were found. CONCLUSIONS: These data support previous findings of galanin-3 receptor involvement in cue-induced reinstatement of alcohol-seeking behaviour, and provide novel evidence that the ability of galanin-3 receptor antagonism to attenuate cue-induced reinstatement relates to activation of the nucleus accumbens shell.


Assuntos
Alcoolismo/dietoterapia , Comportamento de Procura de Droga/efeitos dos fármacos , Indóis/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor Tipo 3 de Galanina/antagonistas & inibidores , Alcoolismo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Sinais (Psicologia) , Etanol , Extinção Psicológica/efeitos dos fármacos , Masculino , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Autoadministração/métodos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
16.
J Invest Dermatol ; 138(1): 199-207, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28844939

RESUMO

The neuropeptide galanin is distributed in the central and peripheral nervous systems and in non-neuronal peripheral organs, including the skin. Galanin acts via three G protein-coupled receptors which, except galanin receptor 1, are expressed in various skin structures. The galanin system has been associated with inflammatory processes of the skin and of several other organs. Psoriasis is an inflammatory skin disease with increased neovascularization, keratinocyte hyperproliferation, a proinflammatory cytokine milieu, and immune cell infiltration. In this study, we showed that galanin receptor 3 is present in endothelial cells in human and murine dermal vessels and is co-expressed with nestin in neo-vessels of psoriatic patients. Moreover, in a murine psoriasis model, we showed that C57/BL6 mice lacking galanin receptor 3 display a milder course of psoriasis upon imiquimod treatment, leading to decreased disease severity, delayed neo-vascularization, reduced infiltration of neutrophils, and significantly lower levels of proinflammatory cytokines compared with wild-type mice. In contrast, galanin receptor 2-knockout animals did not differ significantly from wild type mice at both the macroscopic and molecular levels in their inflammatory response to imiquimod treatment. Our data indicate that galanin receptor 3, but not galanin receptor 2, plays an important role in psoriasis-like skin inflammation.


Assuntos
Citocinas/metabolismo , Neovascularização Patológica/patologia , Infiltração de Neutrófilos , Psoríase/patologia , Receptor Tipo 3 de Galanina/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imiquimode/imunologia , Queratinócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neovascularização Patológica/genética , Nestina/metabolismo , Neutrófilos/imunologia , Psoríase/diagnóstico , Psoríase/genética , Psoríase/imunologia , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 3 de Galanina/genética , Índice de Gravidade de Doença , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia
17.
Neuropeptides ; 63: 14-17, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28431685

RESUMO

Galanin, a neuropeptide co-released from noradrenergic and serotonergic projection neurons to the dentate gyrus, has recently emerged as an important mediator for signaling neuronal activity to the subgranular neurogenic stem cell niche supporting adult hippocampal neurogenesis. Galanin and its receptors appear to play key roles in depression-like behavior, and effects on hippocampal neurogenesis are relevant to pharmacological strategies for treating depression, which in part appear to rely on restoring altered neurogenesis. We previously demonstrated that the GalR2/3 receptor agonist Gal 2-11 is proliferative and proneurogenic for postnatal hippocampal progenitor cells; however, the specific receptor mediation remained to be identified. With the recent availability of M1145 (a specific GalR2 agonist), and SNAP 37889 (GalR3 specific antagonist), we extend our previous studies and show that while M1145 has no proliferative effect, the co-treatment of postnatal rat hippocampal progenitors with Gal 2-11 and SNAP 37889 completely abolished the Gal 2-11 proliferative effects. Taken together, these results clearly demonstrate that GalR3 and not GalR2 is the specific receptor subtype that mediates the proliferative effects of galanin on hippocampal progenitor cells. These results implicate GALR3 in the mediation of galanin neurogenic effects and, potentially, its neurogenic anti-depressant effects.


Assuntos
Proliferação de Células/efeitos dos fármacos , Galanina/análogos & derivados , Hipocampo/efeitos dos fármacos , Indóis/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptor Tipo 3 de Galanina/antagonistas & inibidores , Animais , Galanina/farmacologia , Neurogênese/efeitos dos fármacos , Ratos , Receptor Tipo 2 de Galanina/agonistas
18.
Neuropharmacology ; 118: 1-12, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274821

RESUMO

The neuropeptide, galanin, is widely expressed in the central and peripheral nervous systems and is involved in a range of different functions including nociception, neurogenesis, hormone release, reproduction, cognitive function and appetite. Given the overlap between galanin expression and reward circuitry in the brain, galanin has been targeted for alcohol use disorder (AUD) and opioid dependency. Furthermore, the galanin-3 receptor (GAL3) specifically regulates emotional states and plays a role in motivation, reward and drug-seeking behaviour. We have previously shown that the GAL3 antagonist, SNAP 37889, reduces ethanol self-administration and cue-induced re-instatement in alcohol-preferring (iP) rats with no alterations in locomotor activity or anxiety-like behaviour. The aim of this study was to investigate whether SNAP 37889 reduces binge drinking and/or self-administration of morphine in mice. Using the Scheduled High Alcohol Consumption (SHAC) procedure, SNAP 37889 (30 mg/kg) treated mice drank significantly less ethanol, sucrose and saccharin than vehicle treated mice. Using an operant paradigm, SNAP 37889 reduced morphine self-administration but failed to impact cue-induced relapse-like behaviour. SNAP 37889 had no significant effect on locomotor activity, motor co-ordination, anxiety, nor was SNAP 37889 itself positively reinforcing. Liver assays showed that there was no alteration in the rate of hepatic ethanol metabolism between SNAP 37889 and vehicle treated mice suggesting that the reduction in ethanol intake via SNAP 37889 is due to a central effect of GAL3 signalling. This study implicates the GAL3 receptor in consummatory drive which may have wider implications for the treatment of different addictions.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Comportamento de Procura de Droga/efeitos dos fármacos , Indóis/uso terapêutico , Morfina/administração & dosagem , Entorpecentes/administração & dosagem , Receptor Tipo 3 de Galanina/antagonistas & inibidores , Adaptação Ocular/efeitos dos fármacos , Álcool Desidrogenase/metabolismo , Animais , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Indóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor Tipo 3 de Galanina/metabolismo , Esquema de Reforço , Sacarina/administração & dosagem , Sacarina/metabolismo , Autoadministração , Sacarose/administração & dosagem , Sacarose/metabolismo , Fatores de Tempo
19.
Protein Expr Purif ; 133: 41-49, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28263854

RESUMO

Recent innovative approaches to stabilize and crystallize GPCRs have resulted in an unprecedented breakthrough in GPCR crystal structures as well as application of the purified receptor protein in biophysical and biochemical ligand binding assays. However, the protein optimization process to enable these technologies is lengthy and requires iterative overexpression, solubilization, purification and functional analysis of tens to hundreds of protein variants. Here, we report a new and versatile method to screen in parallel hundreds of GPCR variants in HEK293 produced virus-like particles (VLPs) for protein yield, stability, functionality and ligand binding. This approach reduces the time and resources during GPCR construct optimization by eliminating lengthy protein solubilization and purification steps and by its adaptability to many binding assay formats (label or label-free detection). We exemplified the robustness of our VLP method by screening 210 GALR3-VLP variants in a radiometric agonist-based binding assay and a subset of 88 variants in a label-free antagonist-based assay. The resulting GALR3 agonist or antagonist stabilizing variants were then further used for recombinant protein expression in transfected insect cells. The final purified protein variants were successfully immobilized on a biosensor chip and used in a surface plasmon resonance binding assay.


Assuntos
Expressão Gênica , Receptor Tipo 3 de Galanina , Proteínas Recombinantes de Fusão , Vírion , Células HEK293 , Humanos , Estabilidade Proteica , Receptor Tipo 3 de Galanina/biossíntese , Receptor Tipo 3 de Galanina/química , Receptor Tipo 3 de Galanina/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Vírion/química , Vírion/genética , Vírion/metabolismo
20.
Folia Biol (Praha) ; 63(5-6): 197-201, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29687773

RESUMO

The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The effect of stress is dependent on the activity of the hypothalamic-adenohypophyseal-adrenal axis. Although the adenohypophysis is a crucial part of this axis, galanin peptides and their receptors have not yet been identified in this part of the pituitary after activation of the stress response. Since there are many controversies about the occurrence of individual galanin receptor subtypes in the adenohypophysis under basal conditions, we decided to verify their presence immunohistochemically, and we clearly demonstrated that the adenohypophysis expresses neuropeptides galanin, galanin-like peptide, and subtypes of galanin receptors GalR1, GalR2 and GalR3. The specificity of the reactions was confirmed by Western blots for galanin receptors. Using real-time qPCR we also demonstrated the presence of three GalR subtypes, with the highest expression of GalR2. In addition, we tested the effect of stress. We found that acute stress did not induce any changes in the GalR2 expression, but increased expression of GalR1 and decreased that of GalR3. We confirmed the involvement of the galanin system in the stress regulation in the adenohypophysis.


Assuntos
Galanina/metabolismo , Adeno-Hipófise/metabolismo , RNA Mensageiro/metabolismo , Receptores de Galanina/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Ratos , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Receptor Tipo 3 de Galanina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...